Fast photoacoustic imaging system based on 320-element linear transducer array.

نویسندگان

  • Bangzheng Yin
  • Da Xing
  • Yi Wang
  • Yaguang Zeng
  • Yi Tan
  • Qun Chen
چکیده

A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-Mode Photoacoustic Imaging using Linear Array: Numerical Study for Forward-Backward Minimum Variance Beamformer Combined with Delay-Multiply-and-Sum

Photoacoustic imaging (PAI) is a promising medical imaging modality which provides the resolution of Ultrasound (US) and the contrast of Optical imaging modalities. One of the most important challenges in PAI is image formation, especially in the case that a linear-array US transducer is used for data acquisition. This is due to the fact that in the linear-array scenario, there is only 60 degre...

متن کامل

Three-dimensional endoscopic photoacoustic imaging based on multielement linear transducer array

An implementation system of three-dimensional endoscopic photoacoustic imaging is presented. The developed endoscopic photoacoustic detector integrates a multielement linear transducer array, a reflective device, a Plexiglass tube, and ultrasonic coupling medium. To match with the acoustic impendence of Plexiglass tube, a glycerin solution with 45% volume percentage was used as the ultrasonic c...

متن کامل

A real-time photoacoustic tomography system for small animals.

A real-time 512-element photoacoustic tomography system for small animal imaging using a ring ultrasound array has been developed. The system, based upon a 5 MHz transducer array formed along a 50 mm circular aperture, achieves sub-200 micron lateral resolution over a 2 cm disk-shaped region. Corresponding elevation resolutions of 0.6 to 2.5 mm over the central volume enable depth-resolved 3D t...

متن کامل

Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array.

Due to their low cost, hand-held convenience, wide selection of bandwidths, and ultrasound imaging capability, linear ultrasonic transducer arrays have been widely studied for photoacoustic computed tomography (PACT). As linear-array PACT suffers from a limited view, full-view imaging requires either the transducer or the object to be rotated. So far, both the central frequencies and bandwidth ...

متن کامل

Photoacoustic and ultrasonic coimage with a linear transducer array.

A technique is developed to simultaneously acquire ultrasound and photoacoustic (PA) images based on a linear transducer array. The system uses conventional ultrasound for rapid identification of potential targets. After a target is identified, the ultrasound echo and PA signals can be simultaneously obtained with optimized excitation and a signal collection sequence. The corresponding ultrasou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 49 7  شماره 

صفحات  -

تاریخ انتشار 2004